
- 1) Dai la definizione di Macchina di Turing. [punti 1]
- 2) Spiega la tesi di Church. [punti 1]
- 3) Definisci una macchina di Turing che preso in ingresso un numero naturale non nullo, rappresentato come 1^{n+1} , produca in uscita il suo predecessore. [punti 2]
- 4) Creare un automa di riconoscimento, ovvero un automa che riconosca le seguenti stringhe $\mathbf{a^n c}$, $\mathbf{a^n b^m c}$, $\mathbf{a^n b^m a^p c}$ ($n \ge 0$, m > 0, p > 0). Tieni presente che l'automa avrà uno stato iniziale, e come stato finale ci interessa solo quello che stabilisce il riconoscimento della parola. [punti 2]
- 5) Dato il seguente diagramma che identifica un automa di riconoscimento, dire quale tipo di parole esso riconosce. [punti 1]

6) Programmare una macchina di Turing che, dato un nastro iniziale contenente due sequenze di A separate da una D, termina la sua esecuzione lasciando sul nastro la sequenza che contiene il maggior numero di A. [punti 2]

Esempio

nastro iniziale	nastro finale
AADA	AA
AADAAA	AAA
AADAA DA	AA A